
UCRL-TM-229496

Simulation of Neutron and Gamma Ray Emission from Fission:
Fission Library User manual

Fission Library Development Team

Lawrence Livermore National Laboratory

February 23, 2007

1 Introduction

This document describes how to use the general-purpose and extensible software library libFission.a to
accurately simulate neutron and gamma-ray emission from fission. The first section describes the fission
library interface, the next three sections describe how to run the three popular Monte-Carlo particle transport
codes MCNPX [1], Geant4 [2] and COG, using the fission libraryto sample the fission neutrons and gamma-
rays. This user manual complements the physics reference manual ”Simulation of Neutron and Gamma Ray
Emission from Fission”. The software library can be downloaded from
http://nuclear.llnl.gov/CNP/simulation.

1.1 Limitations of the fission library

The range of neutron energies for which induced fission neutron multiplicity data were available in the
literature spans the range from 0 to 10 MeV, to which corresponds a range of̄ν values. The sampling of
number of neutrons per fission is based on either the incidentneutron energy or the nubar corresponding
to that energy (depending on the option selected insetnudist). When sampling is based on the energy, the
neutron multiplicity data at 10 MeV is used for incident neutron energies greater than 10 MeV. This is clearly
incorrect, and sampling based on nubar is therefore preferred. When sampling is based on nubar, and the
nubar is in the range for which we have multiplicity data fromthe litterature, that data is used. Outside that
range, Terrell approximation is used. Sampling based on nubar is the default for the fission module.

In the case of spontaneous fission, data is only available forthe following isotopes:232Th, 232U, 233U,
234U, 235U, 236U, 238U, 237Np, 238Pu,239Pu,240Pu,241Pu,242Pu,241Am, 242Cm, 244Cm, 249Bk, and252Cf.
The 3 Monte-Carlo MCNPX, COG and Geant4 do not emit any particles if a different spontaneous fission
isotope is specified.

1

2 Fission library interface

The interface to the fission library consists of 22 C functions, each of which will be described below:

2.1 void genspfissevt(int *isotope, double *time)

This function is called to trigger a spontaneous fission. Multiple neutrons and gamma-rays are generated and
stored in a stack along with their energies, directions and emission times. The arguments of this function are

isotope: entered in the form ZA (e.g. 94239 for239Pu)
time: the time of the spontaneous fission

The generated neutrons and gamma-rays, along with their properties will be lost upon the next call to
genspfissevtor genfissevt. Therefore, they must be retrieved immediately by the caller using the appropri-
ate functions described below.

2.2 void genfissevt(int *isotope, double *time, double *nubar, double *eng)

This function is called to trigger a neutron-induced fission. In addition to the arguments above, the fission
inducing neutron is characterized by:

nubar: user-specified average number of neutrons emitted per fission (e.g. as tabulated in the
cross-section libraries used by the particle transport code)

eng: energy of the neutron inducing fission

Either the average number̄ν of neutrons emitted per fission or the energyengof the fission inducing
neutron will be used to determine the number of neutrons sampled, see function 2.9 below. On the other
side, the number of gamma-rays sampled only depends onν̄ . As for genspfissevt, the generated neutrons
and gamma-rays are lost upon subsequent calls to genspfissevt and genfissevt.

2.3 int getnnu () and int getpnu ()

These functions return the numbers of neutrons and gamma-rays emitted in the fission reaction, or -1 if no
number could be sampled in the fission library due to lack of data. The reader is referred to the physics
reference manual to find the list of isotopes for which sampling will return positive numbers.

2.4 double getneng(int *index) and double getpeng(int *index)
double getnvel(int *index) and double getpvel (int *index)

These functions return the energies and velocities of the neutrons/gamma-rays.

2

2.5 double getndircosu(int *index), double getndircosv (int *index),
double getndircosw(int *index)

double getpdircosu(int *index), double getpdircosv (int *index),
double getpdircosw(int *index)

These 2 families of functions return the direction cosines of the velocity vector on the x, y and z axes for the
fission neutrons and gamma-rays.

2.6 double getnage(int *index) and double getpage(int *index)

This functions returns the age of the fission neutron/gamma-ray, or -1 if index is out of range. The age
returned might be different from the time specified in genfissevt and genspfissevtfor delayed neutrons
and gamma-rays, see function setdelay2.7 below. Currently, delayed fission neutrons/gamma-raysare not
implemented, so all fission products are emitted promptly.

2.7 void setdelay(int *delay)

This function is called to enable delayed neutrons and gamma-rays. The argumentdelayis set to

0 (default) for strictly prompt neutrons and photons
1 (n/a) for prompt neutrons, prompt and delayed photons
2 (n/a) for prompt and delayed neutrons, prompt photons
3 (n/a) for prompt and delayed neutrons, prompt and delayed photons

Delayed neutrons and gamma-rays have not yet been implemented in the fission library. This setting has
presently no effect on the age sampling. All neutrons and photons are currently emitted promptly (delay=0).

2.8 void setcorrel (int *correlation)

This function is called to set the type of neutron/gamma-raycorrelation. The argumentcorrelation is set to

0 (default) for no correlation between neutrons and photons
1 (n/a) for number correlation between neutrons and photons
2 (n/a) for number and energy correlation between neutrons and photons

Correlations between neutrons, photons and their energies, have not yet been implemented. This setting
has thus no effect on the outcome of the fission library.

2.9 void setnudist(int *nudist)

This function is called to set the data to be sampled for the neutron number distributions in neutron-
induced fissions. The argumentnudistcan take 3 values:

3

0 to use the fit to the Zucker and Holden tabulated P(nu) distributions as a function of energy for235U,
238U and239Pu.

1 to use fits to the Zucker and Holden tabulated P(nu) distribution as a function of energy for238U and
239Pu, and a fit to the Zucker and Holden data as well as the Gwin, Spencer and Ingle data (at thermal
energies) as a function of energy for235U.

2 to use the fit to the Zucker and Holden tabulated P(nu) distributions as a function of nubar. The238U
fit is used for the232U, 234U, 236U and238U isotopes, the235U fit for 233U and235U, the239Pu fit for
239Pu and241Pu.

3 (default) to use the discrete Zucker and Holden tabulated P(nu) distributions and correspnding nubars.
Sampling based on the incident neutron nubar. The238U data tables are used for the232U, 234U, 236U
and238U isotopes, the235U data for233U and235U, the239Pu data for239Pu and241Pu.

For the isotopes not listed above, the Terrell approximation is used. By default,nudist is equal to 3.

2.10 void setcf252(int *ndist, int *neng)

This function is specific to the spontaneous fission of252Cf. It is called to set the data to be sampled for
the (a) Cf252 spontaneous fission number distribution, and (b) Cf252 spontaneous fission neutron energy
spectrum. It takes the following arguments:

ndist:
0 (default) to sample the number of neutrons from the tabulated data measured by Spencer
1 to sample the number of neutrons from Boldeman’s data

neng:
0 (default) to sample the spontaneous fission neutron energyfrom Mannhart corrected

Maxwellian spectrum
1 to sample the spontaneous fission neutron energy from Madland-Nix theoretical

spectrum
2 to sample the spontaneous fission neutron energy from the Froehner Watt spectrum

By default, bothndistandnengare set to 0.

2.11 void setrngf(float (*funcptr) (void)) and void setrngd (double (*funcptr) (void))

This function sets the random number generator to the user-defined one specified in the argument. If either
setrngf or setrngd are not specified, the default system call srand48 is used. The arguments are random
number generator functions that returns variables of type float and double respectively.

4

3 Geant4

This section describes how to use the fission library with theMonte-Carlo code Geant4.
This physics module has been submitted to the Geant4 collaboration and will appear in a future release.

In the meantime, users can compile and link the fission library with Geant4 themselves as described below.
the fission library distribution contains an
The following 3 subsections below describe (a) which c++ classes are necessary to use the fission library,

(b) the steps to compile the c++ classes and (c) how to run the executable. The last subsection describes the
current limitations.

3.1 Description of c++ classes

The classes PrimaryGeneratorAction, MultipleSource, MultipleSourceMessenger, SingleSource, SponFis-
sIsotope are necessary to generate spontaneous fission neutrons and gammas.

Spontaneous fissions are generated in the PrimaryGeneratorAction class, which derives from G4VUserPrimaryGeneratorAction.
The spontaneous fission source needs to be described in termsof geometry, isotopic composition and fission
strength. In the example file, the spontaneous fission sourceis a volume source emitting in a sphere of
radius 3.97 cm centered on the origin. Two isotopes,238U and235U fission at the rates of 2.368 and .7475
fissions/second, respectively. Once this information is given, the constructor creates 2 spontaneous fission
isotopes, of class SponFissIsotope, and adds them to the source of class MultipleSource. When Geant 4
needs to generate particles, it calls the method PrimaryGeneratorAction::GeneratePrimaries, which firstly
sets the time of the next fission based on the fission rates entered in the constructor, and then calls the the
method MultipleSource::GeneratePrimaryVertex which determines which one of the two isotopes will fis-
sion. This method in turn calls the method SponFissIsotope::GeneratePrimaryVertex for the chosen isotope.
It is in this method that the neutrons and photons sampled from the fission library are added to the stack
of secondary particles. Sources other than spontaneous fission isotopes can be added to the source of class
MultipleSource. For instance, a background term emitting alarge number of background gamma-rays can
be added, as long as it derives from the class SingleSource. The intensity of that source would be set the
same as for the spontaneous fission isotope sources.

For induced fissions, the two classes G4FissLib and G4FissionLibrary are necessary to build the physics
process. An instance of the class G4FissLib needs to be addedto the PhysicsList to accurately simulate
fission processes using the fission library. This is done in PhysicsList via the following code snippet:

G4ProcessManager* pmanager = particle->GetProcessManager();
G4String particleName = particle->GetParticleName();

if (particleName == "gamma") {
(...)

} else if (particleName == "neutron") {
(...)
// Fission library model
G4HadronFissionProcess *theFissionProcess = new G4HadronFissionProcess();
G4FissLib* theFissionModel = new G4FissLib;
theFissionProcess->RegisterMe(theFissionModel);
pmanager->AddDiscreteProcess(theFissionProcess);
(...)

5

} else ...

The constructor of G4FissLib does two things. First it readsthe necessary fission cross-section data
in the file located in the directory specified by the environment variableNeutronHPCrossSections. It does
this by initializing one object of class G4NeutronHPChannel per isotope present in the geometry. Second,
it registers an instance of G4FissionLibrary for each isotope as the model for that reaction/channel. When
Geant4 tracks a neutron to a reaction site and the fission library process is selected among all other process
for neutron reactions, the method G4FissLib::ApplyYourself is called, and one of the fissionable isotopes
present at the reaction site is selected. This method in turncalls G4NeutronHPChannel::ApplyYourself
which calls G4FissionLibrary::ApplyYourself, where the induced neutrons and gamma-rays are emitted by
sampling the fission library.

3.2 Compilation

Please refer to thegeant directory in the fission library source code distribution for a complete example
and explicit instructions for compiling and linking the fission library with Geant4. Besides setting the usual
environmental variables for Geant4, one also needs to set EXTRALIBS to -lFission before building the
executable. The fission library libFission.a must be located in a directory specified in the link line. A
good place for libFission.a is the directory $G4WORKDIR/tmp/$G4SYSTEM/execname The header file
Fission.hh must be in the include directory.

3.3 Execution

The environment variableNeutronHPCrossSectionsmust point to the G4NDL3.10 directory, where the in-
duced fission cross-sections and data are located.

3.4 Limitations

The induced-fission data available in G4NDL3.10 is scarce. Currently, there are only data files for 7 isotopes
of Uranium: 232U, 233U, 234U, 235U, 236U, 237U and238U. The origin of the data has not been investigated.
For other isotopes, induced fission will not emit any particles. The fission library does not have any sponta-
neous fission data for isotopes other the ones listed in section 1.1.

6

4 MCNPX

This physics module has been submitted to the MCNPX development team and will appear in a future
release. The fission physics included in the library libFission.a is readily available to MCNPX users via a
flag on the PHYS:N card. To enable sampling of neutrons and gamma-rays from libFission.a, the 6th entry
fismof the PHYS:N card should be set to 5:

phys:n 100 0 0 -1 -1 5

fism=5 is the only MCNPX setting for which gamma-rays are sampled inanalog for fission reactions. The
fission library can be sampled for both induced and spontaneous fission reactions, the latter only when the
par flag of the source definition cardsdef is set tosf:

sdef par=sf

as to specify a spontaneous fission source in MCNPX. In the case of spontaneous fissions, only the iso-
topes listed above in section 1.1 have data in the fission library. For other spontaneous fission isotopes, no
neutrons, nor gamma-rays are emitted.

This fismsetting has an effect on the standard MCNPX gamma productionsampling. By default, MC-
NPX emits a number of gamma-rays at each neutron collision site, independent on the type of nuclear
reaction. This number is sampled from an energy dependent photon yield curve, which is the sum of the
production yields from different nuclear reactions. Whilethis method is not accurate on a per reaction
basis, this leads to the right number of gammas emitted over alarge number of reactions, on an average ba-
sis. If these default gamma-rays were sampled with the fission library enabled, the number of gamma-rays
would then be off in average. To remediate to this problem, the contribution to the photon yield curve that
corresponds to fission reactions is suppressed when libFission.a is in use.

7

5 COG

This physics module has been submitted to the COG development team and will appear in a future release.
The fission library libFission.a can be sampled for induced fissions in COG using theFISSLIBkeyword in
the MIX block of the input deck. This is not the default. TheNUOPTIONcan not be used concurrently, it
is not compatible withFISSLIB.

COG is similar to MCNPX in that it emits a number of gamma-raysat each neutron collision site, and
this number is independent on the reaction type. The keywordNOGAMPROcan be used to completely turn
off this gamma-ray production.

Spontaneous fissions are implemented using a COG user source. A sample user source ’spfiss.F’ is
available in the COG distribution subdirectory ’usrsor’. Compiling a COG user source is trivial:

make -f COGUserlib.make in=spfiss.F

Using the right compiler at compile time is important, and ifthis becomes an issue, a COG developer
should be contacted. It is also important to use a COG versionthat is compatible with user sources and user
detectors. Not all COG versions work with user sources/detectors.

An example of input deck using the ’spfiss’ spontaneous fission source is located in the ’usrsor’ directory.
The important lines related to the user source are in the SOURCE block:

SOURCE
NPART = 5e4 $ NPART is the sum of spontaneous fission neutrons and photons
$
$ The source below is for a HEU shell (93% enriched in U-235).
$ We neglect here the spontaneous fissions in U-235. The fission rate
$ for 350 g of U-238 is 350[g]*1.36*10E-2[n/g/s] = 4.76 n/s. With
$ spontaneous nubar equal to 2.01, we have
$ 4.76[n/s]/2.01[n/fission] = 2.368 fissions/sec
$ name isotope strength xcenter ycenter zcenter Rin Rout FissRate
$ (1) (2) (3) (4) (5) (6) (7) (8)
USRSOR spfiss 92238 1. 0. 0. 0. 1. 3.96 2.368
$

NPART is the sum of all source particles, that is both spontaneous fission neutrons and gamma-rays. The
line USRSOR has several arguments: The argument under ’name’ specify the FORTRAN subroutine to be
used a the spontaneous fission source: ’spfiss’. The first numeric argument is the isotope in the form ZA,
followed by the source strength (not relevant in this case),the center of the shell (x, y, z), the inner and
outer radii and the fission rate in fissions/second. Note the units of the fission rate, fissions/second and not
neutrons/second.

8

References

[1] ”MCNPX Version 2.5.0 User’s Manual”, LA-CP-05-0369, Los Alamos National Laboratory (2005).

[2] Nuclear Instruments and Methods A506, 250-303 (2003).

9

